

Annie M. Pfeiffer Chapel, Florida Southern College, Lakeland, Florida. *Robin Hill*,
<http://www.photoshopshowcase.com/ViewFlashMedia.aspx?AID=110446&AT=3>

Child of the Sun: A Crumbling History Preserved

Child of the Sun: A Crumbling History Preserved

It was because of one man's vision and determination that Frank Lloyd Wright was commissioned to design his largest and most cohesive body of work anywhere in the world, in the orange groves of Lakeland, Florida. One sight at the landscape and he was suddenly convinced it would be his best piece of work. "This is the first time I ever have been absolutely idealistically interested in a college. Here is going to be the crowning event of my career, a shrine to both idealism and religion."¹ Little did anyone know exactly what the future would hold with regards to the realization of the campus, buildings and structures which would make up Florida Southern College, or the span of their longevity. This paper seeks to further address and discuss the conservation issues affecting the textile blocks which make up the buildings of Frank Lloyd Wright at Florida Southern College.

Originally founded in Leesburg, Florida, by the Florida Methodist Conference as a seminary in 1885, the school was named South Florida Institute. In 1901 the campus was moved to Sutherland (now Palm Harbor) and the name was eventually changed to Southern College. After devastating fires in the early 1920s, the campus was again moved temporarily to Clearwater Beach, before finally settling in

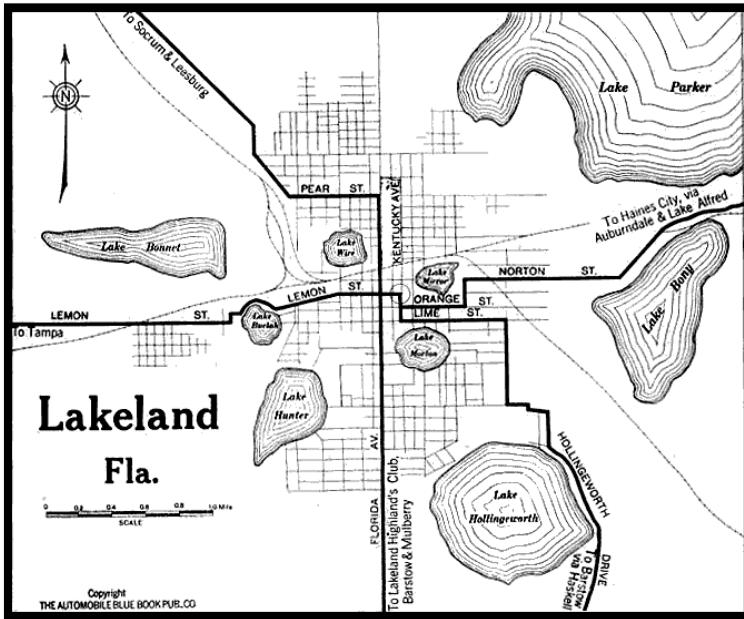


Fig. 1 Map of Lakeland, Florida, 1919. The college would eventually be located on the northern shore of Lake Hollingsworth. The Automobile Blue Book Corporation. *Middle Atlantic and Southeastern Automobile Blue Book* 1922.

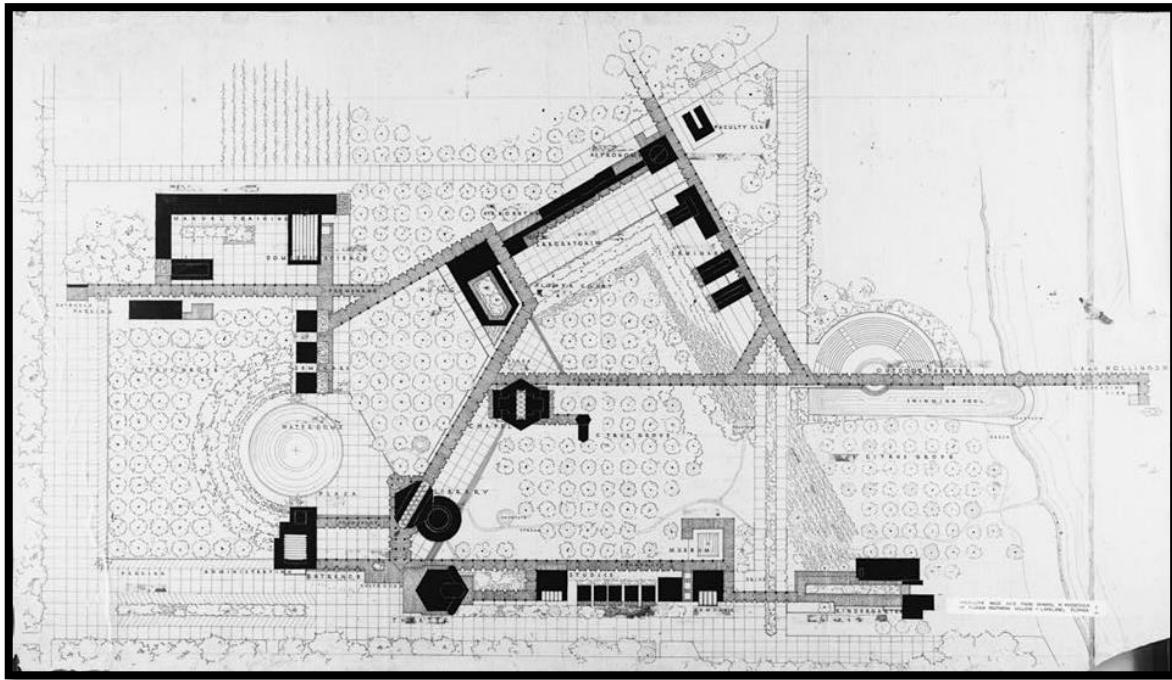
¹ Siry, "Frank Lloyd Wright's Annie M. Pfeiffer Chapel for Florida Southern College: Modernist Theology and Regional Architecture." *Journal of the Society of Architectural Historians*, Vol. 63, No. 4 (Dec. 2004): 503.

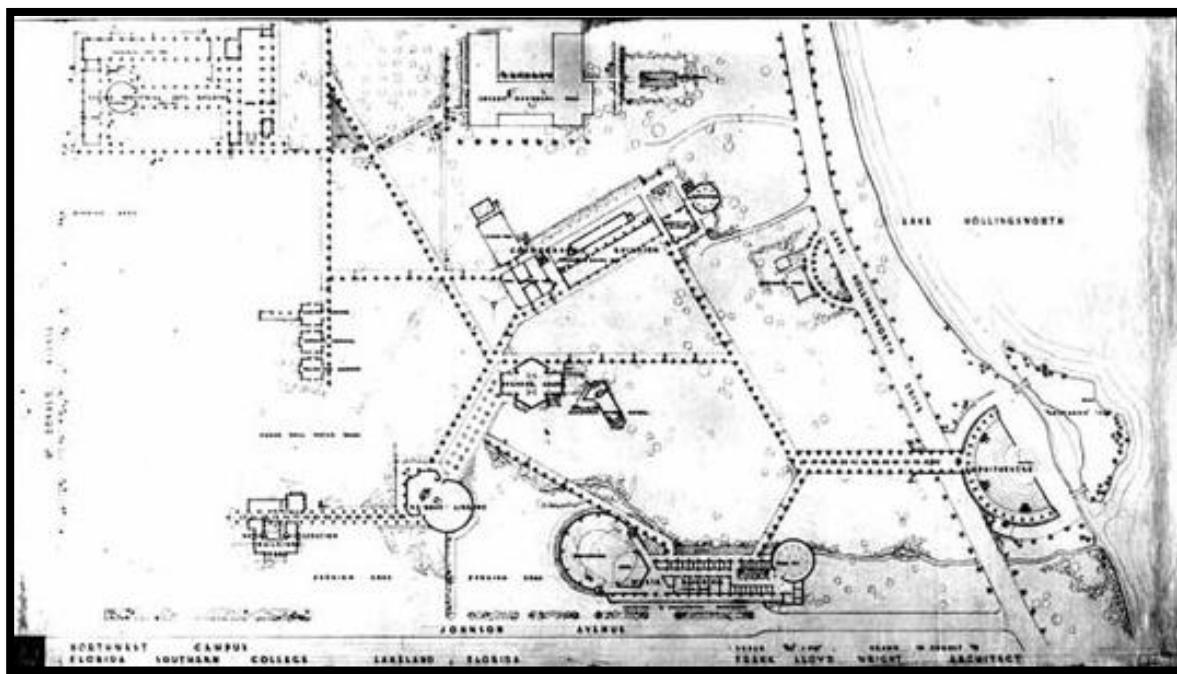
Lakeland permanently in 1922, under the name Florida Southern College. Around this time, Lakeland had been the capital of Florida's citrus industry and the property which the college acquired was about 70 acres covered with orange groves.²

A local architect by the name of F. H. Trimble, from Orlando, was commissioned by the college to design the campus' master plan. Five of these buildings were realized before Frank Lloyd Wright was ever a consideration. The president of the college, Ludd M. Spivey, had a clear vision of the campus that he desired for Florida Southern College. Spivey was in the process of securing funds for the school, in order to move forward with the realization of the campus. The primary donor at that time was E. Stanley Jones, an internationally famous Christian evangelist most known for his missionary work throughout India.³ The E. Stanley Jones Educational Foundation was organized to help the college move forward and promote a religiously focused education. Unfortunately, there was a parting of ways and the foundation quickly dissolved, although Spivey took great efforts to take advantage of the clout which Jones brought to the school and continued to raise funds through the use of Jones' name and the foundation.

It is unknown what sparked Spivey's contacting Frank Lloyd Wright for the design of the college, but the first contact was made on 11 April 1938, through a telegram:

*"Desire conference with you concerning plans for great education temple in Florida."*⁴


Within the month, Spivey visited Wright at Taliesin, where the project was discussed thoroughly. Wright made his first visit to the Lakeland campus in May 1938, taking in the environs of the land, the area surrounding the campus as well as various parts of Lakeland. He was immediately infatuated with the


² Ibid., 499.

³ Gyure, *Frank Lloyd Wright's Florida Southern College* (Gainesville, Florida: The University Press of Florida, 2010), 17.

⁴ Ibid., 26.

Fig. 2 Original Master Plan of Florida Southern College, 1938. *Florida Southern College*.

Fig. 3 Final Master Plan of Florida Southern College. *The State of Florida Archives*.

place, saying, "This is a great opportunity here because you have a beautiful piece of ground, I shall be very proud indeed to give the Foundation a fresh form, a Florida form."⁵

Wright looked at the opportunity of Florida Southern as a challenge, which he embraced wholeheartedly. He began to formulate his ideas and the process for his design; it would be a complex of about 18 buildings encircling a massive fountain and all connected through a series of esplanades, or covered walkways (Fig. 2, 3).⁶ The buildings were assimilated within the topography of the sloping landscape of Lakeland's hilly terrain and were well connected through the series of orthogonal esplanades. In Spivey's words of Wright's design, "He has skillfully arranged to bring much of the outdoor beauty of Florida into the interior of the buildings. He has designed each structure so that it will appear to grow out of the ground in harmonious relationship with vibrant nature."⁷

Fig. 4 Annie M. Pfeiffer Chapel, looking towards Lake Hollingsworth (facing south). *Augustus Mayhew, The New York Social Diary*, <http://www.newyorksocialdiary.com/node/920187>.

⁵⁵ Ibid., 30.

⁶ Allen, "Restoring a Campus-Full of Frank Lloyd Wright," NPR, accessed 26 September 2013, <http://www.npr.org/templates/story/story.php?storyId=14933254>, paragraph 5.

⁷⁷ Spivey, "Good News! A Progress Report about the E. Stanley Jones Educational Foundation," *Bulletin of Florida Southern College*, May 1939, 3-4.

Although 18 buildings were involved in the initial design of the master plan, only 12 would be realized: two chapels, three seminar buildings, a library, two administration buildings, an industrial arts building, a science building, the esplanades, and the water dome. The first of these buildings to commence construction was that of the Annie M. Pfeiffer Chapel (Fig. 4, 5). Wright used this as “the focus for his experiments with cement block as the signature material for the project.”⁸ After his initial site visit in 1932, Wright’s attention was focused on the local sand, of which he had decided to incorporate within his textile block design of sand and cement. He saw it as a way to reconnect with nature and “give indigenous character to [the] buildings.”⁹

Since money was limited on the part of the college, Wright decided to utilize the textile block system, which he had used in the past, to help eliminate the costs of skilled workers. These textile blocks were so called for their ornately textured concrete facings. Wright hoped the addition of the ornamental design to mass produced concrete blocks would make the “fabric capable of great variety in architectural beauty.”¹⁰ This worked quite well with the plan that Spivey had in mind, for he was quite passionate about students not just learning from books but also from experiences. Considering many of the students enrolled at the college were receiving some sort of financial aid, Spivey thought it beneficial for all involved to “reduce their tuition by working on the buildings.”¹¹ Students could work three days a week and attend to their classes three days a week.

During Wright’s second site visit to Lakeland, in December 1938, he “personally supervised experiments with [the] blocks made from the sand in the orange grove, but it proved unsuitable because of its fertilizer content.”¹² This led to further explorations with varying mixtures of sand from different

⁸ Siry, 514.

⁹ Ibid., 515.

¹⁰ Lockwood, “LA Homes Mark Architect’s Most Turbulent Period,” *Los Angeles Times*, 30 January 1983.

¹¹ Gyure, 88.

¹² Siry, 515.

areas of Florida, which were performed at Taliesin and eventually shipped back to Lakeland and tested under local conditions. The first blocks were a mixture of a white lime base and local sand. A cement called 'Santa Cruz Hi Silica' was added to the mixture, as was a flesh-colored 'Master-Builder Mix,' but they were still proving too weak and faulty. It

was decided that a sand containing coquina (Fig. 6), a soft limestone formed from coral reefs and seashell fragments (also a traditional building material found throughout Florida), would be used as an aggregate in conjunction with sand, cement and water. This mixture would then be added to pre-built molds (Fig. 7) made of either aluminum or wood and then these blocks would be allowed to harden for two to three weeks before use.

These grand efforts to perfect the failing blocks consumed a majority of the time in the first year of construction, as testing of various formulas and mixtures were quite unsuccessful. Yet, the system seemed viable, considering concrete was affordable, it was supposed to be a durable material and the

Fig. 6 Coquina. R. Weller/Cochise College

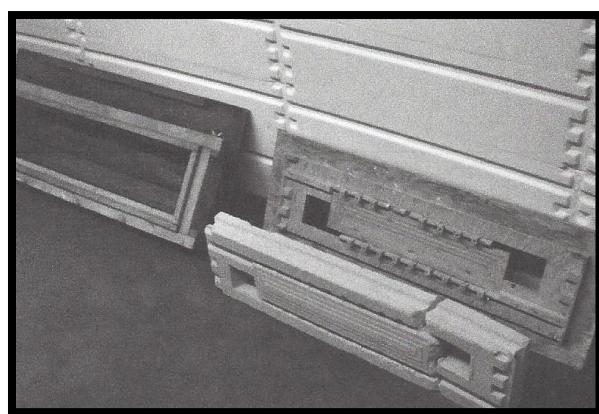


Fig. 7 Example of a textile block and the mold from which it was formed. Florida Southern College.

system of the textile blocks were one in which the unskilled students could piece together and construct. "Despite complaining in 1927 about the effects unskilled labor had on the LA houses in an article for *Architectural Record*, Wright again proposed his system to Spivey."¹³

¹³ Chusid, *Preserving the Textile Block at Florida Southern College* (World Monuments Fund, 2011), 16.

Nearing the end of August 1939, the mixture of coquina and the addition of white California cement finally met the requirements of strength and appearance. A student who had worked on the chapel recalled that there were two mixtures used, "the first mix -or facing- into the wooden mold was damp coquina sand and cement, and on top of that was added a mix of gray cement for the parts of the block that would never show."¹⁴

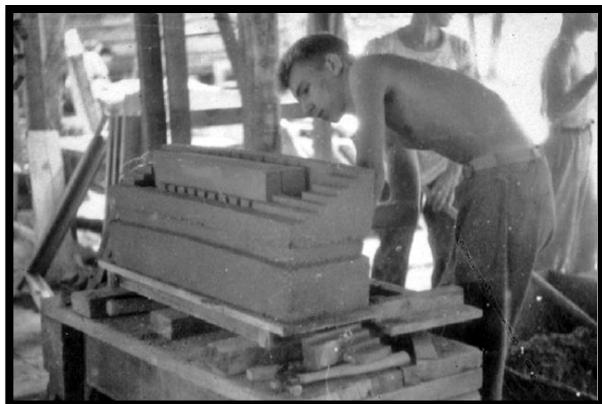


Fig. 8 Student with a molded block. *Florida Southern College*.

requested the [textile] blocks be damp cured for at least 30 days."¹⁵ Once ready for use, the textile blocks were stacked on top of each other in either a series of columns or rows with each block grooved around the edges to allow space for steel reinforcing both vertically and horizontally through a wall. First the blocks were stacked vertically and horizontally in a dry state along the steel (Fig. 9), then the steel reinforcement was encased with grout which was supposed to "protect the steel and to bond the masonry units

The textile blocks were molded so as to avoid a mortar bed through the introduction of a 'grout tube.' After the blocks were formed (Fig. 8), they were allowed a 24-hour period to harden, afterwards they were watered every day for approximately 17-20 days, "although Wright

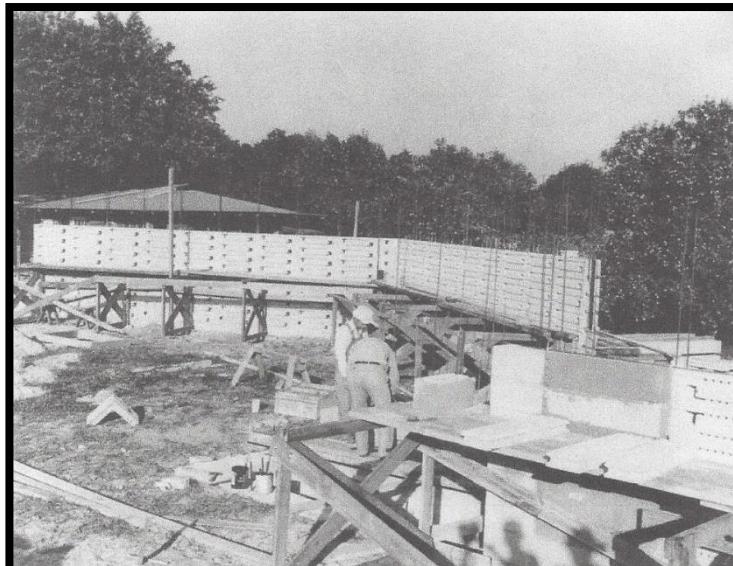
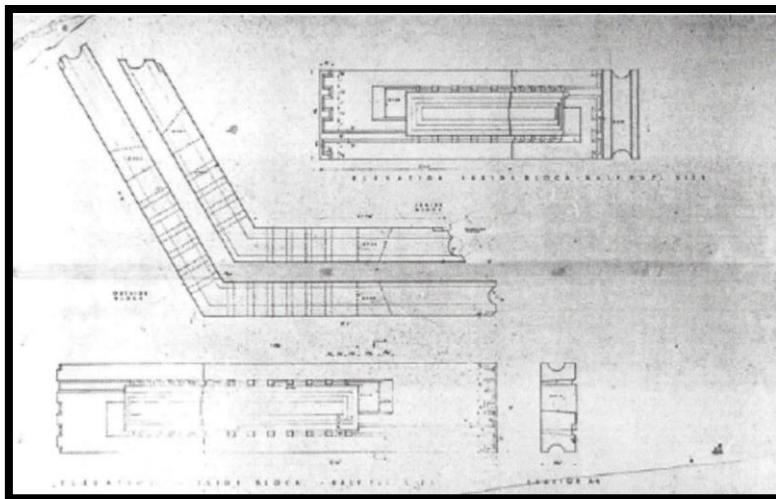


Fig. 9 Construction site of Annie M. Pfeiffer Chapel. Blocks stacked together vertically and horizontally with steel reinforcement. *The Frank Lloyd Wright Foundation, Photograph no. 3816.040*.


¹⁴ Gyure, 90-91.

¹⁵ Ibid., 91.

together.”¹⁶ This would later have negative consequences for many of the buildings on the campus, as this type of construction carried out by unskilled workers left too much room for error. The missing mortar bed made the alignment of the blocks uneven and the use of molds allowed slight variations within each block, which also caused issues with alignment, as well. Making the blocks allowed for great inaccuracies of color, quality and durability, as the mixtures used to create each block varied as there were so many different people mixing batches of material (Fig. 10, 11).

Fig. 10 A student preparing the mixture of coquina and cement within a wooden mold. *Florida Southern College*

Fig. 11 Plans of an obtuse corner block, similar to that which the student is crafting. *Florida Southern College*.

The chapel was constructed mainly by the student workers under the supervision of skilled craftsmen. For the chapel’s completion of 1941, it took the effort of roughly 46 students, 32,000 hours of work and nearly 30,000 textile blocks. Due to all of the variations in materials, combinations, construction techniques and practices, the building started to deteriorate. Restoration efforts commenced much earlier than expected in 1944, after a damaging hurricane swept through Lakeland with 100 mph winds causing the chapel’s tower to collapse, as Wright had not addressed hurricane related issues properly in the building’s structural design before completion. The tower was modified and reconstructed. Wright

¹⁶ Chusid, 12.

later wrote to Spivey saying his plans for the chapel were “executed under circumstances too cheap and practically botched in construction.”¹⁷

The Three Seminars (Carter, Wallbridge, and Hawkins Seminars) (Fig. 12, 13), E.T. Roux Library (Fig. 14, 15), Waterdome (Fig. 16), Emilie E. Watson Administration Building (Fig. 17) and the Benjamin Fine Building (Fig. 18) would follow construction of the chapel within the late 1940s. The remaining Industrial Arts Building (Fig. 19, 20), Polk County Science Building (Fig. 21-23), William H. Danforth Chapel (Fig. 24, 25) and the remaining esplanades (Fig. 26, 27) would realize completion in the 1950s. They all followed suit to the chapel, in that they were built with unique textile blocks, again through the efforts of the student workers, exchanging their efforts for financial aid. The same construction techniques were at play though, including the block-making process and the physical assembly of the blocks.

Further restoration efforts would be carried out through the years on nearly all of the buildings. For the sake of this paper, the efforts of the Waterdome, esplanades and the Annie M. Pfeiffer Chapel will be discussed briefly. Jeffrey Baker, the principal architect overseeing the restoration of Florida Southern College was in charge of preparing a restoration plan for the set of Frank Lloyd Wright buildings, which was also inclusive of “elements that never really fulfilled Wright’s vision.”¹⁸ The Waterdome, although completed in 1949, was never brought to complete working order, mainly due to a lack of water pressure. Baker and his team were able to install new plumbing and pumps to fully restore the fountain to operate as Wright had intended.

¹⁷ Siry, 528.

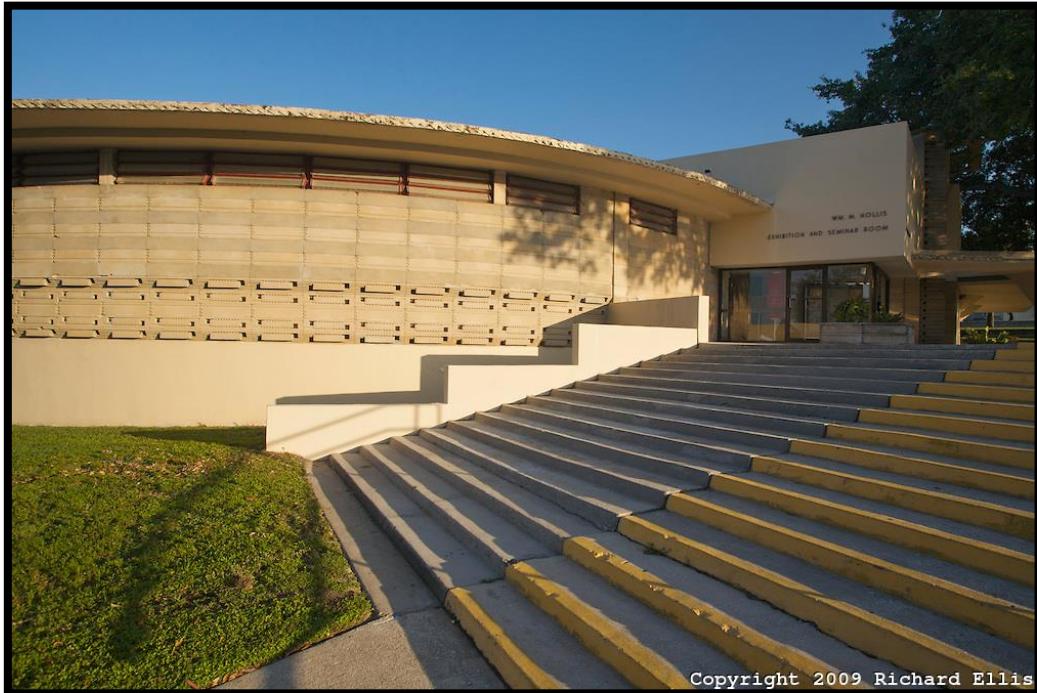

¹⁸ Allen, paragraph 8.

Fig. 12 Three Seminars (Carter, Wallbridge, and Hawkins Seminars), now the Business Office of the college, was completed in 1942. *Council of Independent Colleges*, <http://hcap.artstor.org/cgi-bin/library?a=d&d=p635.1>

Fig. 13 Damage to the Three Seminars is inclusive to widespread discoloration, deterioration and biological staining from moisture damage. *Mesick Cohen Wilson Baker Architects*

Fig. 14 E.T. Roux Library, now known as the Buckner Building, was completed in 1946. *Richard Ellis*, http://ellisphotos.photoshelter.com/image/I0000UK_cNjAAjY.

Fig. 15 E.T. Roux Library, east façade displays improper repairs through use of sealant and biological staining. *Mesick Cohen Wilson Baker Architects*.

Fig. 16 Waterdome, partially completed in 1949, but never in proper working order. It was finally restored in 2006. *Florida Southern College*.

Fig. 17 The Emile E. Watson Administration Building, completed in 1949. The exterior block wall is severely cracked and deteriorating. *Augustus Mayhew, The New York Social Diary, <http://www.newyorksocialdiary.com/node/920187>*.

Fig. 18 Benjamin Fine Administration Building, completed in 1949. *Mary Ann Sullivan*, <http://www.bluffton.edu/~sullivanm/florida/lakeland/floridasouthern/0020.jpg>.

Fig. 19 Industrial Arts Building, now referred to as the Ordway Building, was completed in 1952. *JHD-Designz*, http://www.findingmrwright.com/fsc_ia1.htm

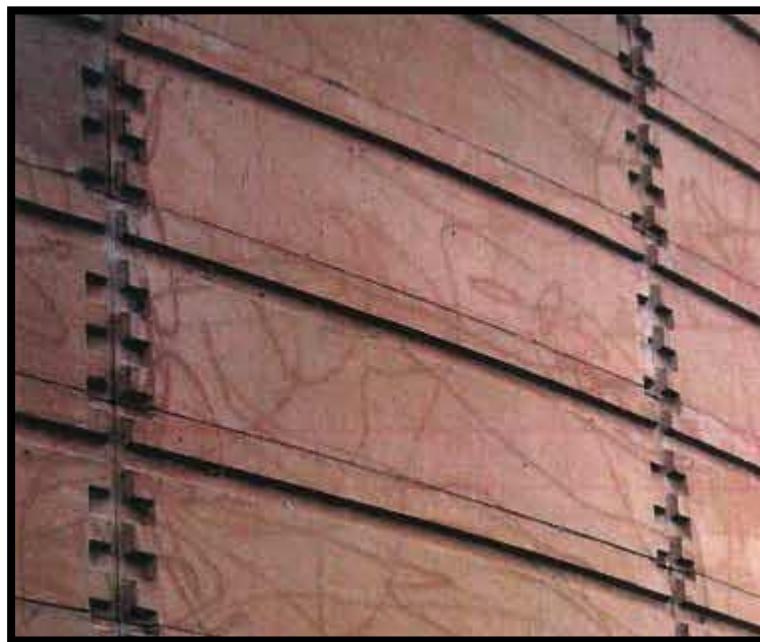

Fig. 20 Fletcher Theater housed in the Industrial Arts Building, damage includes corrosion of metal elements and concrete deterioration. *Mesick Cohen Wilson Baker Architects.*

Fig. 21 Polk County Science Building, completed in 1958, was the only planetarium to be designed by Wright. *Jackie Craven, <http://0.tqn.com/d/architecture/1/0/k/o/PolkCountyScience-BuildingPlanetarium045.JPG>*

Fig. 22 Polk County Science Building, east façade shows biological staining and mold from moisture infiltration.
Mesick Cohen Wilson Baker Architects.

Fig. 23 Polk County Science Building, permanent damage from harsh pressure cleaning. *Mesick Cohen Wilson Baker Architects.*

Fig. 24 William H. Danforth Chapel, completed in 1955, is the only leaded-glass composition designed by Wright. *Augustus Mayhew, The New York Social Diary*, <http://www.newyorksocialdiary.com/node/920187>.

Fig. 25 William H. Danforth Chapel, east façade is host to biological staining, copper carbonate deposits, and improper repairs with sealant. *Mesick Cohen Wilson Baker Architects*.

Fig. 26 View of an esplanade. The entire system of walkways was completed in the 1950s. There is evidence of biological staining on the ceiling, stripping of the paint and cracking due to lack of expansion joints. *Cambridge 2000 Gallery*, <http://www.cambridge2000.com/aallery/html/P72021532e.html>.

“Frank Lloyd Wright described this campus, at one point as a series of esplanades that occasionally became buildings.”¹⁹ As much importance as he weighed on the esplanades, he failed to properly construct them by not ensuring they would have expansion joints. This led to their ultimate deterioration, as they cracked in these exact areas where the expansion joints were necessary. Also the exposed steel reinforcements had created spalling at several points, which in turn had further depreciated the enveloping cement. For the restoration of the esplanades, the damage was well surveyed and documented. The cracks were addressed with hard or flexible epoxy repairs. All corroded and rusted steel reinforcement was consolidated at the spalled areas throughout and properly covered with cement. The

¹⁹ Ibid., paragraph 19.

Fig. 27 Cracking, deterioration and sagging, as viewed in the esplanades, are caused by rusted and corroded steel reinforcement and the lack of design of expansion joints. *Mesick Cohen Wilson Baker Architects.*

esplanades were repainted and patina applied where necessary. Site drainage was also improved in an attempt to slow and prevent future deteriorations.²⁰

The Annie M. Pfeiffer Chapel was in a deplorable condition before renovations were performed: “fist-sized holes in its crumbling exterior walls,”²¹ extensive water infiltration and damage, rodents nesting within the building, corroded steel reinforcement and areas of complete deterioration of textile blocks.²² The textile blocks were initially surveyed to identify block types and to determine the extent of the damage and replacement needed. Sources of water infiltration were investigated

and deteriorated blocks were completely replaced. The rodents were removed and holes were remedied by replacing those blocks. Corroded steel was consolidated and recovered in cement.²³

“To Wright, this material was a highly expressive, decorative, and practical approach to create monumental yet affordable buildings. However, like so many of Wright’s experiments with materials and engineering, textile block has posed major challenges to generations of building owners, architects, and conservators who have struggled with the system’s material and structural performance.”²⁴ The fact is that these set of buildings, due to their erratic and inconsistent construction, have caused a serious

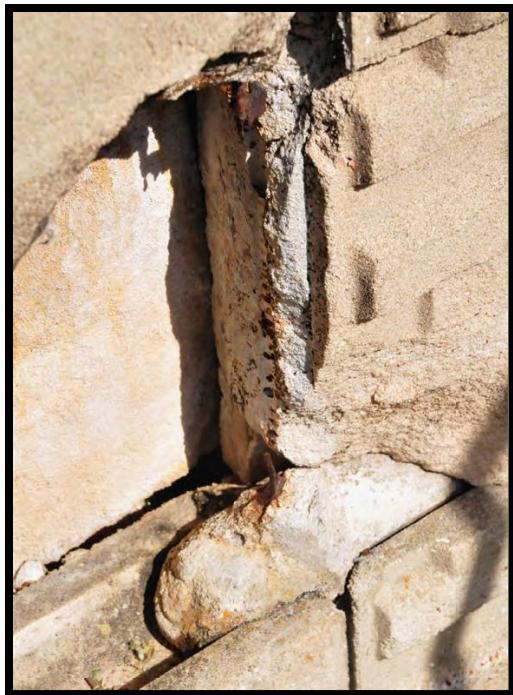
²⁰ Mesick Cohen Wilson Baker Architects, *The Frank Lloyd Wright Campus: Campus Heritage Preservation Plan* (Albany, NY, 2008), 74-75.

²¹ Allen, paragraph 2.

²² McMullen, “Annie Pfeiffer Chapel Gets \$350,000 Grant,” *The Ledger*, accessed 02 November 2013, <http://www.theledger.com/article/20081217/NEWS/812170388?p=2&tc=pg>.

²³ Mesick Cohen Wilson Baker Architects, 250.

²⁴ Burnham, *World Monuments Fund??*


preservation challenge. Some might argue that every textile block is a testament to creative work, in that they were each handmade, and each block should be equally conserved. On the other hand, many see the textile blocks as a whole unit working together; that their function as a material and system is unified and to replace a few here or there is nothing, as long as the system remains intact. Which side is correct? "Maintaining the original historic fabric in the form of damaged or deteriorated blocks means, in some cases, inserting a secondary construction system to do the work that the originals can no longer perform."²⁵

The historical integrity of these buildings are at risk. To remove an original piece from any one of these buildings or structures and construct a new piece in its place, as a means of repair, risks unforeseeable damage in the future; in an instant the trace of any historic reference can vanish. If these buildings are to be wholly conserved, meaning the cracks, patches and patina are to be embraced and attended to as best as possible, the other risk will be the inevitable and eventual demise. This is the dilemma facing architects and conservators who have been working on the campus. No one wants to see a completely new building standing in the place of any one of these structures, but at the alarming rate in which the deterioration (Fig. 28 - 33) is occurring (even to recently fixed elements) it almost seems unavoidable. The textile block as a whole is not ultimately at risk though. The interior and the exterior facings, where guarded from excess rain and moisture, are in great condition and have little to no damage, but "there are three important exceptions: 1) when threatened by unrelated work, such as the installation of equipment or by painting, 2) when impacted by leaks, and 3) when the block is subject to the transmission of distress from elsewhere such as through settlement or thermal expansion."²⁶

²⁵ Chusid, 8.

²⁶ Ibid., 8.

Fig. 28 The steel reinforcement has caused erosion, instigating the brick to lose its integrity, now highlighting the once hidden grout tubes. *Jeffrey M. Chusid, World Monument Fund.*

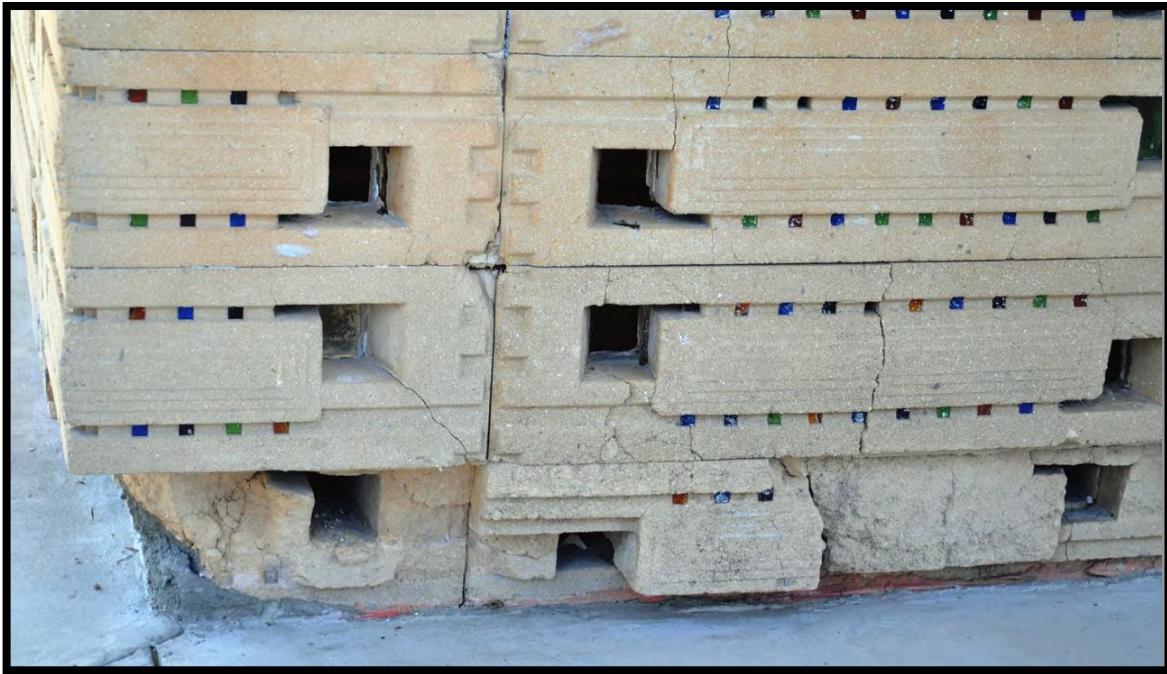

Fig. 29 Evidence of different mixes and replacements and/or patches of blocks. Attention is necessary to resolve these visual and structural blunders. *Jeffrey M. Chusid, World Monument Fund.*

Fig. 30 Another example of discoloration due to different mixes and replacements of blocks. Also there are hints of biological staining and efflorescence. *Jeffrey M. Chusid, World Monument Fund.*

Fig. 31 Thermal expansion of the corner blocks has been a primary cause for the apparent cracking. The steel reinforcement is rusting and corroding, as well, causing the blocks to further deteriorate. *Jeffrey M. Chusid, World Monument Fund.*

Fig. 32 Cracking, erosion and deterioration are unmistakable in this view of the corner of blocks. Surface water appears to be the leading cause of damage to the ground level. *Jeffrey M. Chusid, World Monument Fund.*

The most pertinent conservation issues plaguing the buildings and structures at Florida Southern College target three groups: the blocks, the system as a whole entity and the site conditions and changes of use which are affecting the buildings. As mentioned earlier and seen in the earlier presented examples of damage to the buildings, it is clear that the main problem affecting the blocks is the inconsistency in their manufacturing which in turn has affected their strength, appearance and longevity. It is obvious that each and every block has a unique composition and shape, as it is almost impossible to retain uniformity through the means in which they were created. These discrepancies have had an influence on the aging and exposure to the elements; mainly the heat, humidity and moisture which is common throughout Florida. Through the constant patching and/or replacement of individual blocks, the actual issue is failing to find resolution. The replacements and patches only add to the list of those elements which will need attention again in the not so distant future. Baker says it better, "There are two kinds of blocks – the

blocks that have failed and the blocks that will fail.”²⁷ This ‘failing’ factor is largely due to their porous composition, which has little chance against the local environmental elements.

Fig. 33 Example of the facing separating from the block system. *Jeffrey M. Chusid, World Monument Fund.*

The system as a whole entity cannot function without the block, as it is the main component, but the block depends upon the support of the grout tubes and the steel reinforcements. Because of the porous material composition of the block, deterioration from excess moisture infiltration has lead to the demise of the steel reinforcement causing corrosion and rust. This creates spalling and expansion of the block which begins to compromise the entire system. As deterioration continues, the security of the reinforcements and grout tubes becomes endangered. This can lead to the block’s displacement and/or the separation of the block’s facings (Fig. 33). Baker adds, “Some of the problems with the structures came

²⁷ Biemiller, “An Unrivaled Collection of Wright Buildings Proves to Be a Joy and a Challenge,” *Chronicle of Higher Education* 53, no. 41: A30-A31 (2007), paragraph 13.

from the fact that Wright was a step beyond the materials of his day. For example, raw materials like polymers and synthetics can now be used on the roofs, but [did] not work so well in his lifetime.”²⁸

The site conditions and changes of use throughout the years have had profound impacts on the buildings. Thermal expansion is a major problem developed from the lack of a mortar bed which appears to plague the corners of the buildings (Fig. 31). Wright did not leave room in his plan for HVAC systems, as he did not like air conditionning, but rather preferred nature.²⁹ Instead, he designed special ventilator blocks which allowed the air to travel through certain blocks of the buildings, but this has introduced serious moisture problems. Unfortunately for Wright, the college did not share this belief and HVAC systems were added to the buildings. They were “put in [unsightly locations] and new walls [were] created to hide mechanicals.”³⁰ Another issue is the collection of excess ground water from rainwater runoff. This poses a serious risk for those blocks nearer to the ground level. The water easily seeps through the unmortared joints, rusting the steel reinforcement and causing the blocks to crack under added pressure.

Considering these buildings are a National Register historic resource, it is important that great care and attention is provided to these buildings. Under the care of someone who is properly educated and well-informed of the materiality of the textile blocks, a proper maintenance system, involving regular, gentle cleaning of the buildings, needs to be implemented and followed through. Regular check-ups for moisture infiltration should be carried out, especially during rainy seasons, and findings should be documented. Above all, every effort should be made to preserve what remains of the original structures. Knowing these buildings have been at risk and are at risk of future deterioration, it is key that the

²⁸ Ceraulo, “Frank Lloyd Wright’s Campus: A Florida College Restores Its Wright Collection,” *National Trust for Historic Preservation*, accessed 28 September 2013, <http://www.preservationnation.org/magazine/story-of-the-week/2008/big-man-on-campus.html#.UnTvJHTD-M8>, paragraph 10.

²⁹ Kay, “Florida Campus Restoration Revives Frank Lloyd Wright’s Vision,” *Art Daily*, accessed 01 November 2013, http://artdaily.com/news/36026/Florida-Campus-Restoration-Revives-Frank-Lloyd-Wright-s-Vision-#.UnQZ_3TD-M8.

³⁰ Ceraulo, paragraph 9.

maintenance and management team(s) stay a step or two ahead, predicting appropriate decisions for the proper care and upkeep of these buildings. With the right attention and foresight, greater devastation to the campus' historical integrity can optimally be avoided.

References

Allen, "Restoring a Campus-Full of Frank Lloyd Wright," NPR, accessed 26 September 2013, <http://www.npr.org/templates/story/story.php?storyId=14933254>.

Biemiller, "An Unrivaled Collection of Wright Buildings Proves to Be a Joy and a Challenge," *Chronicle of Higher Education* 53, no. 41: A30-A31 (2007).

Ceraulo, "Frank Lloyd Wright's Campus: A Florida College Restores Its Wright Collection," *National Trust for Historic Preservation*, accessed 28 September 2013, <http://www.preservationnation.org/magazine/story-of-the-week/2008/big-man-on-campus.html#.UnTvJHTD-M8>.

Gyure, *Frank Lloyd Wright's Florida Southern College* (Gainesville, Florida: The University Press of Florida, 2010).

Kay, "Florida Campus Restoration Revives Frank Lloyd Wright's Vision," *Art Daily*, accessed 01 November 2013, http://artdaily.com/news/36026/Florida-Campus-Restoration-Revives-Frank-Lloyd-Wright-s-Vision-#.UnQZ_3TD-M8.

Lockwood, "LA Homes Mark Architect's Most Turbulent Period," *Los Angeles Times*, 30 January 1983.

McMullen, "Annie Pfeiffer Chapel Gets \$350,000 Grant," *The Ledger*, accessed 02 November 2013, <http://www.theledger.com/article/20081217/NEWS/812170388?p=2&tc=pg>.

Mesick Cohen Wilson Baker Architects, *The Frank Lloyd Wright Campus: Campus Heritage Preservation Plan* (Albany, NY, 2008).

Siry, "Frank Lloyd Wright's Annie M. Pfeiffer Chapel for Florida Southern College: Modernist Theology and Regional Architecture." *Journal of the Society of Architectural Historians*, Vol. 63, No. 4 (Dec. 2004).

Spivey, "Good News! A Progress Report about the E. Stanley Jones Educational Foundation," *Bulletin of Florida Southern College*, May 1939.